前面我們已經(jīng)講解了定桿和動桿的彈力方向問題,沒有預(yù)習(xí)的小伙伴請戳高中難點內(nèi)容:關(guān)于定桿和動桿的彈力問題詳細(xì)了解?! ?/span>
今天,我們就著重分析彈簧的彈力問題,找一找彈簧內(nèi)心最真實的想法。
一、彈簧彈力的方向
彈簧在彈力的方向上和動桿類似,可拉、可壓,彈力方向與彈簧形變方向相反?! ?/span>
二、彈簧彈力的大小
相比較桿和繩,彈簧彈力大小最特殊,特殊到居然可以由公式來計算彈簧的彈力!這個公式就是F=kx(①并不是說桿和繩不能用此公式計算,只是高中階段認(rèn)為桿和繩無形變,計算不涉及此公式;②此公式中的x指形變量。
所以,處理彈簧彈力大小的問題只需要找彈簧的形變量就可以了。
彈簧彈力的大小和方向都比較簡單,我們著重講解彈簧的第三個特點:
三、彈簧彈力變化問題
由(二)可知,當(dāng)k一定時,彈簧彈力F與形變量x成正比。如圖三,當(dāng)外力剛撤去的那一瞬間,彈簧來不及收縮,彈簧的形變量來不及發(fā)生變化?! ?/span>
彈簧的形變量不變,所以彈簧的彈力大小不變。也就是說,當(dāng)外力撤去的一瞬間,彈簧的彈力保持不變?! ?/span>
為了方便理解,我們來看兩個例題。
處理此類問題,只需要抓住“撤去外力瞬間,彈簧彈力不變”。也就是說,撤去外力瞬間,受力分析中彈簧彈力不變,繩的拉力消失。再求解出物體受到的合力,即可求出小球的加速度。故: 對于1小球,合力大小為5mg,方向豎直向上;小球加速度大小為5g,方向豎直向上; 同理,2小球的加速度大小為2.5g,方向豎直向下;3小球的加速度大小為0?! ?/span>
例2:在動摩擦因數(shù)μ=0.2的水平面上有一質(zhì)量為m=1kg的小球,小球的一端與水平輕繩相連,輕繩與豎直方向成θ=45°角,如圖6所示。小球處于靜止?fàn)顟B(tài),且與水平面的彈力恰好為零,g=10m/s2,求剪斷繩子后小球加速度的大小。
易錯分析:根據(jù)以往的慣例我們會認(rèn)為,剪斷繩子后物理受向左的彈力和向下的重力,物體的加速度方向會向為左下方。而我們卻忽略了當(dāng)繩子拉力消失后,地面對小球的支持力和摩擦力會突然出現(xiàn)?! ?/span>
剪斷繩子后,受力分析如圖5中的(2)。拉力消失,支持力和摩擦力出現(xiàn)。對小球,有: F彈-μmg=ma,解得a=8m/s2?! ?/span>
可以說,彈簧的內(nèi)心是孤獨的。它總是想守護者自己心中的那一份執(zhí)著,然而現(xiàn)實卻讓它不得不改變。和桿及繩比起來,彈簧更大的特點在于彈簧的彈力不能突變。處理動態(tài)、變化類型的問題,最主要要找準(zhǔn)題目中的“變”與“不變”。再結(jié)合牛頓第二定律,就可以求解出你想要的答案。